

Bridge Expansion Joint Committee Interim Report

Western Bridge Preservation Partnership Conference
Portland OR, May 18-20,2015

Committee Objectives

- ☐ Develop Bridge Expansion Joint Matrix and document "Best Practices" utilizing National Elements as a common platform to communicate
- ☐ Committee Members
 - Debbie Steiger Watson Bowman Acme
 - Ted Hopwood II Kentucky Transportation Center
 - Herb McDowell Idaho Department of Transportation
 - Mike Lee California Department of Transportation
 - Josh Sletten Utah Department of Transportation
 - Bruce Thill Washington Department of Transportation
 - Wally Smith Crafco

Bridge Expansion Joint Matrix

- □3 Joint Types
- ☐4 Tab Matrix
 - Manufacturer information
 - Performance Data
 - Condition Status
 - Life Cycle Cost
- **□**SurveyMonkey
- □ Document "Prevailing Practices"

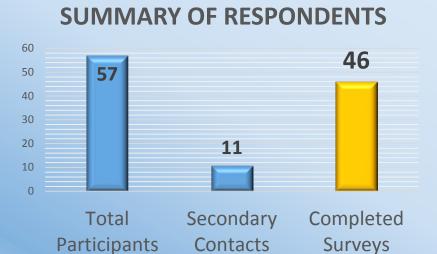
	Bridge Joints: Generic Joint Type	ELI (Element Level Inspection)
+	Strip Seal Expansion Joint	300
	Pourable Joint Seal	301
	Compression Joint Seal	302
	Assembly Joint with Seal	303
	Open Expansion Joint	304
	Assembly Joint without Seal	305
	Other Joint	306

Data Collection

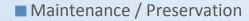
SurveyMonkey: developed to gain an understanding of current joint use by DOTs within the WBPP both from the design and maintenance perspective and to determine selection, installation and maintenance factors that affect joint performance. (Capture regional differences)

☐ Focus areas:

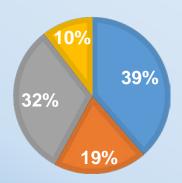
- Usage / limitations
- Life expectancy
- Constructability
- Maintenance


- Design and configurations
- Field conditions and installation
- Movement
- Informational Needs

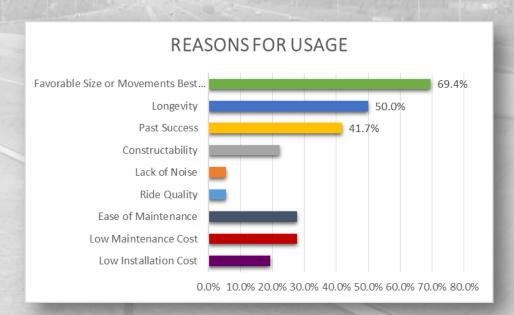
Bridge Expansion Joint SurveyMonkey


- ☐ Distributed by the WBPP
- ☐ Sent to all 4 Bridge
 Preservation Partnership
 members
- ☐ 25 State agencies represented
- ☐ 11 of 13 WBPP States participated

Survey Respondents

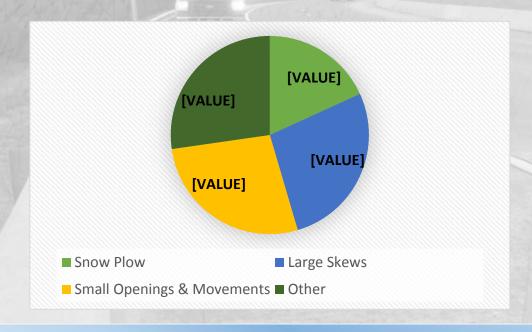

SUMMARY OF RESPONDENTS BY POSITION

Design


300 – STRIP SEAL EXPANSION JOINT

300 - STRIP SEAL EXPANSION JOINT

STRIP SEAL PREVAILING PRACTICES:


- Favorable Movements & Specific Sizes
- Longevity and history of success

300 - STRIP SEAL EXPANSION JOINT

☐ AREAS STRONGLY DISCOURAGED:

- 38 respondents
- 51% Noted limiting usage in particular areas

300 – STRIP SEAL EXPANSION JOINT

■ MAINTENANCE ISSUES:

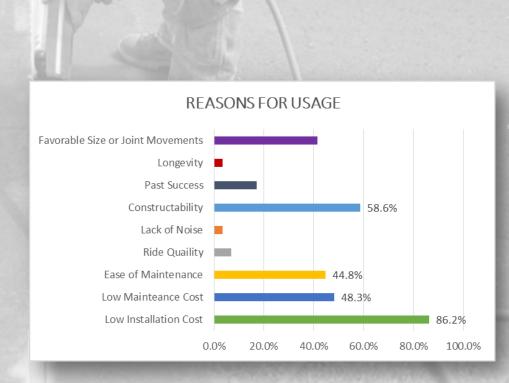
- Debris Impaction 67.57%
- Seal Damage 62.16%
- Leakage 59.46%
- Do not regularly clean or re-seal 76%

□ CONSTRUCTABILITY & FIELD CONDITIONS:

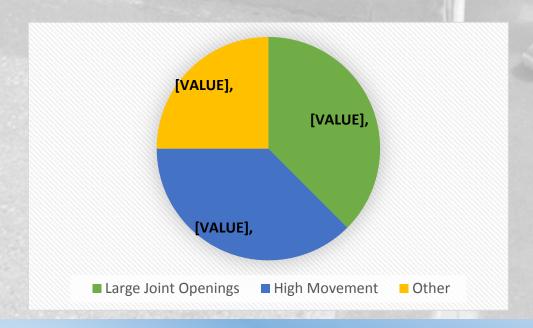
Prevailing Practices

- Formed blockouts 72%
- Allowance of rail splices 86%
- No splicing of the gland 71%
- State Inspections 86%
- NOT used: Difficult to Maintain 60%

□ LACK OF CONSISTENCY :


- Skewed conditions
- Anchorage Types
- Coatings
- Determining Movements

Q: Does your state commonly use Pourable Joint Seals as described under element 301 in the AASHTO Manual for Bridge Element Inspection


POURABLE JOINT SEAL PREVAILING PRACTICES:

- Low Installation Cost
- Constructability
- Low Maintenance Cost
- Ease of Maintenance

☐ AREAS STRONGLY DISCOURAGED:

- 32 respondents
- 65.6% Noted limiting usage in particular areas

☐ MAINTENANCE ISSUES:

- Seal Adhesion 85.3%
- Leakage 79.4%
- Debris Impaction 67.57%
- Do not regularly clean or re-seal 75.8%

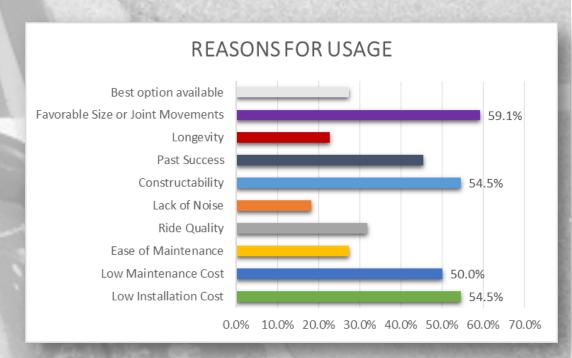
☐ LACK OF CONSISTENCY :

- Joint preparation cleaning of substrate
- Skew conditions
- Gap openings
- Movement Rating
- Determining Movements

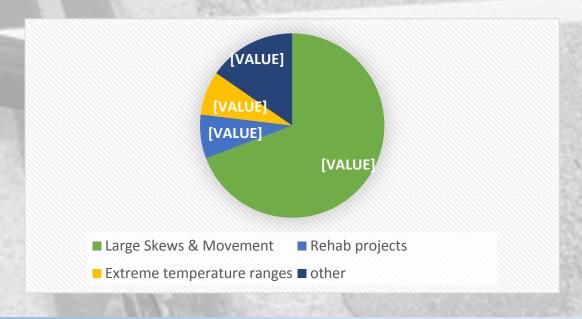
☐ CONSTRUCTABILITY & FIELD CONDITIONS:

Prevailing Practices

- Limit skews to 0-10 degrees 58%
- Sawcutting of joint opening NOT required 66.7%
- NOT used : Seal Adhesion 93.8%


302 - COMPRESSION SEALS

302 – COMPRESSION SEALS


COMPRESSION SEAL PREVAILING PRACTICES:

- Favorable Size or Joint Movements
- Constructability
- Low Maintenance Cost
- Low Installation Cost

302 – COMPRESSION SEALS

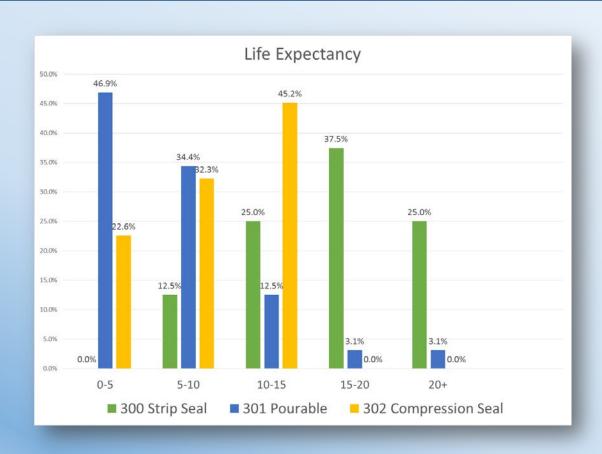
- ☐ AREAS STRONGLY DISCOURAGED:
- 26 respondents
- 73.1% Noted limiting usage in particular areas

302 – COMPRESSION SEALS

MAINTENANCE ISSUES:

- Leakage 75.9%
- Seal Adhesion 65.5%
- Seal damage 41.4%
- Debris Impaction 37.9%
- Do not regularly clean or re-seal 75.8%

☐ LACK OF CONSISTENCY :


- Surrounding Substrate
- Joint preparation cleaning of substrate
- Proper depth setting of seals
- Determining Movements

CONSTRUCTABILITY & FIELD CONDITIONS:

Prevailing Practices

- Limit skews to 0-10 degrees 92.3%
- Field splicing of seal allowed 61.5% at the lane lines 53.3%
- Sawcutting of joint opening NOT required 72.7%
- Product requirements: Certificate of compliance 69.6% State testing 52.2%

LIFE EXPECTANCY

MOVING FORWARD

■ NEXT STEPS

- Finalize matrix of 3 types with performance data, condition status and life cycle costs
- Post findings to TSP2 site
- Investigate feasibility of correlating data with other partnerships findings
- Begin work on next Element Level Inspection 303 Assembly Joint with Seal

Thank you!

WBPP Bridge Expansion Joint Committee

Questions?